拐点和驻点的区别有哪些
发布时间:2022-11-17 21:03:27拐点:二阶导数为零,且三阶导不为零;驻点:一阶导数为零或不存在。区别:可导函数f【x】的极值点【必定】是它的驻点。
驻点与拐点区别
驻点仅仅便是指一阶导数等于0的点。拐点是指凹凸性改变的点。
函数的一阶导数为0的点称为函数的驻点,驻点能够划分函数的单调区间。【驻点也称为稳定点,临界点。
拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二次导数,则二次导数必为零或不存在。
驻点和拐点的区别在驻点处的单调性可能改变,在拐点处单调性也可能发生改变,但凹凸性肯定改变。
拐点和驻点的概念
驻点:一阶导数为0的点。
拐点:函数凹凸性发生变化的点。
极值点:在邻域内为比较大值的点。
怎么判定驻点:要函数在某点一阶可导,且一阶导数值为0。
怎么判定拐点:1,若函数二阶可导,某点二阶导数值为零,两端二阶导数值异号。2,若函数三阶可导,则二阶导数为0,三阶导数不为0的点便是拐点。
怎么判定极值点:取极值的点一阶导数为0或导数不存在。1,一阶导为0时,若一阶导两端异号为极值点。2,二阶可导时,一阶导为0,二阶导不为0则为极值点,二阶导大于0极小值,二阶导小于0极大值。
聊聊关系。
极值点不一定是驻点,驻点不一定是极值点。由于取极值不需要可导,驻点必须可导。
对于可导函数,极值点必定是驻点。
拐点不一定是驻点,比如y=x三次方+x。由于二阶导数某点为0不能判定一阶导数在某点为0。
驻点显然更不一定是拐点,驻点要一阶导数为0,而拐点需要二阶可导(此处得网友提醒拐点未必需要可导)。
相关问答
- 陌上桑翻译和原文赏析2022-11-18
- 食物链的定义及组成部分2022-11-18
- Buy的过去式和过去分词是什么2022-11-17
- 大气垂直分层及特点2022-11-17
- 高锰酸钾属于化合物吗2022-11-16
- 俟在文言文中的意思2022-11-16