费马大定理证明过程

发布时间:2022-11-21 12:08:40

费马大定理证明过程:设:a=d^【n/2】,b=h^【n/2】,c=p^【n/2】;则a^2+b^2=c^2就能够写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p能够是任意整数。

证明过程(部分)

1.若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立.

证:在定理原式a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,

获得:(na)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m

原式化为:n^m(a^m+b^m)=n^m(c^m+d^m+e^m)

两边消掉n^m后获得原式.

因此,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数.

2.若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数.

证:取定理原式a^m+b=c^m

取增比为n,n>1,获得:(na)^m+n^mb=(nc)^m

原式化为:n^m(a^m+b)=n^mc^m

两边消掉n^m后获得原式.

因为b不能化为a,c的同方幂数,因此n^mb也不能化为a,c的同方幂数.

因此,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立.

其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数.

高中辅导机构推荐

简单学习网

简单学习网简单学习网是知名的中学辅导网站,提供高中学习机及高中视频资源,帮助全国中学生提高学习效率及成绩。

免费试听