考研数学三大题方法

发布时间:2022-05-10 15:08:11

考研 数学三大题方法

一、踩点得分

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。也叫踩点给分,即踩上知识点就得分,踩得多就多得分。因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。因此,会做的题目要特别注意表达准确、逻辑清晰、书写规范、语言严谨,防止被“分段扣点分”。

二、大题拿小分

有的大题难度比较大,确实啃不动。一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步。尚未成功不等于失败,特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分。最后结论虽然未得出,但分数却已过半。

三、以后推前

考生在解题过程中卡在某一步是很常见,这时可以换一种思路,也许就会柳暗花明又一村。同学们可以把卡壳处空下来,先承认中间结论,再往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

四、跳步解答

由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问当作“已知”,“先做第二问”,这也是跳步解答。

五、以退求进

以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

考研数学刷题方法

1、分析条件和结论的联系

解完题后,要思考题目涉及了哪些知识点,各已知条件之间是怎样深化和联系的,有哪些条件的应用方式是以前题目中没有出现过的,条件和结论是怎样联系的,求得的结果与题意或实际生活是否相符。通过这样的思考可使我们清楚题目的背景,促使我们进行大胆探索,进而发现规律,激发创造性思维。

2、体会数学方法和思想

解题后,要注意思考所解题目运用的是那一种数学方法,渗透了什么数学思想,以达到举一反三、触类旁通的目的。常用的数学方法主要有:配方法、换元法、待定系数法、定义法、数学归纳法、参数法、反证法、构造法、分析与综合法、特例法、类比与归纳法。经常进行这样的思考和分析,有利于对知识的深刻理解和运用,提高知识的迁移能力。

3、一题多解与多题一解

在解题时不要仅满足与解决了题目,还要考虑有无其他解法。经常尝试多种解法,可以锻炼我们思维的发散性,培养我们综合运用所学知识解决问题的能力和不断创新的意识。思考解决这道题目的方法还可以解决那些题目。这些题目背景可能千差万别,但解决时所用的数学方法是一样的。这样的思考能帮助我们看清题目的本质,大大提

4、题目的变化与拓展

解完一道题目,还可以对它进行适当的变化和拓展。主要可以改变题目条件,包括条件的加强与条件的减弱,条件与结论的交换等。改变题目的结论,主要是结论的深化和延伸。一题多变,有利于开阔眼界,拓宽解题思路,提高应变能力,有效地预防思维定势的负面影响。

5、错误的总结与记录

解题后,要思考题中易混易错的地方,总结预防错误的经验和犯错误的教训,有必要的要做好错题记录。把一道题目做好,充分利用好题目的训练功能,久而久之,你就会体会到“题不在多而在精”的道理。

考研数学题型和解决方法

数学证明题技巧1.结合几何意义

1.记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

知道基本原理是证明的基础,知道的程度【即对定理理解的深入程度】不同会导致不同的推理能力。如2006年数学一真题第16题【1】是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。

这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

2.借助几何意义寻求证明思路

一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点【正确审题:两个函数取得最大值的点不一定是同一个点】之间的一个点。

这样很容易想到辅助函数F【x】=f【x】-g【x】有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题【1】是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f【x】及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

3.逆推法

从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多【这里所举出的例子就属非正常情况】,这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

数学综合题解题技巧

一、做典型题,培养解题思路

在考研复习中对于那些具有很强的典型性、灵活性、启发性和综合性的题,考生要特别注重解题思路和技巧的培养。典型题可以理解为基础题以和常考题型。做这种题时考生要积极主动思考,不能只是为了做题而做题。要在做题的基础上更深入地理解、掌握知识,所学的知识才能变成自己的知识,这样才能使自己具有独立的解题能力。

例如线性代数的计算量比较大,但纯计算的题目比较少,一般都是证明中带有计算,抽象中夹带计算。这就要求考生在做题时要注意证明题的逻辑严紧性,掌握知识点在证明结论时的基本使用方法,虽然线性代数的考试可以考的很灵活,但这些基本知识点的使用方法却比较固定,只要熟练掌握各种拼接方式即可。

尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。

二、找切入点,理清知识脉络

考生们在解综合题时,最关键的一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在考研复习中要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。

解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。

三、选常规题,珍惜复习时间

对于比较偏门和奇怪的试题,建议大家不要花太多的时间。同学们在复习中做好分析好考研数学的常规题目便已足够。研究生考试不是数学竞赛,出现偏门和怪题的情况微乎其微,因此完全没必要浪费时间。

考研复习中,遇到比较难的题目,自己独立解决确实能提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做大半天的冲动。

填空题的答案是的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。

填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。

考研数学冲刺方法

▲做完也要留着

做完就丢下以前的试题,这是最不可取的,做完试题后总结是一个直观重要的环节。总结自己在做题中的经验,做题的思路,自己是怎么做的,错了,为什么错了,是哪个知识点还没有掌握牢,这样让自己逐步的提高,这是提升考研数学分值的重要环节之一。总结不需要长篇大论,只要能够体现出做题中的精髓,只言片语也是足够的。另外一个很重要的忌讳就是看完题之后就去看答案,这是最不可取的一种方法,答案只是参考,考察自己做题的正确与否,如果每次都急着先去看答案,那你在练习中你可能能很快的做对某些题目,但是在真正的考试中,你就会毫无思路的。

▲建立错题档案

大家在平时做题或看书时会发现一些自己总出错的,类型比较新颖的题目,不妨用本子把题目和解题思路摘抄下来,并把此类题目整理到一起,经常翻看,整理出一本错题档案。同时,计算能力是不能忽略的,不论哪个时期那个阶段,大家都不能把计算能力忽略,一定要坚持动笔算,一旦停滞,你的算术能力便会大大下降。

▲求简、求巧、求美

基础知识如果一段时间不看就会有些生疏,用的时候拿不准,所以要每天都携带在身上,就像英语单词小册子一样,要经常温习。考生平时有必要做一些针对性的习题,采取小题大做,即将某些"小题"借题发挥,对题型进行归类,对思路进行筛选,做到会中求简、会中求巧、会中求美,坚持不懈地追求解法的较高境界。这样既能使自己掌握各类题的解法,加深理解解题方法的合理性和适用性,又有利于培养自己的探索精神和创新精。

考研辅导机构推荐

新东方在线

新东方在线新东方在线考研网络课堂为您提供考研在线课程,正价课免费学,限时优惠活动进行中。

免费试听