考研数学解答题答题技巧
发布时间:2022-05-10 15:50:12考研 数学解答题答题技巧
考研数学不是一味复习就能拿高分的,还要讲究答题技巧。那么,考研数学解答题答题技巧有哪些?
技巧一:立足基础,融会贯通
解答题作答的基本功还是在于对基本概念、基本定理和性质以及基本解题方法的深入理解和熟练掌握。因此首先做好的有两个层面的复习:第一,把基本概念、定理、性质彻底吃透,将重要常用的公式、结论转变为自己的东西,做到不靠死记硬背也可得心应手灵活运用,这是微观方面;第二,从宏观上讲,理清知识脉络,深入把握知识点之间的内在关联,在脑海中形成条理清晰的知识结构,明确纵、横双方向上的联系,方可做到融会贯通,对综合性考查的题目尤为受用。
技巧二:分类总结解题方法与技巧
主观题分为三大类:计算题、证明题、应用题。三类题型分别有各自独特的命题特点以及相应的做题技巧。例如计算题要求对各种计算【如未定式极限、重积分等】常用的定理、法则、变换等烂熟于心,同时注意各种计算方法的综合运用;而证明题【如中值定理、不等式证明等】则须对题目信息保持高度敏感,熟练建立题设条件、结论与所学定理、性质之间的链接,从条件和结论双向寻求证明思路;应用题着重考查利用所学知识分析、解决问题的能力,对考生运用知识的综合性、灵活性要求很高。同学们在复习的过程中要注意针对三种不同的题型分别总结解题方法与技巧,及时归纳做题时发掘的小窍门、好方法,不断提高解题的熟练度、技巧性。在做题的过程中,保持与考纲规定的范围、要求一直是首要原则,可以选一本根据新考试大纲编写的主观题专项训练题集,对三大类解答题进行针对性的训练与深入剖析,在做题的过程中提炼解题要领、解决各类题型的关键环节与作答技巧,做到触类旁通,活学活用,获取知识掌握与解题能力的同步提高。
技巧三:抓好两个基本点
这里的两个基本点指的是对每一位同学解题备战至关重要的两大要素——核心题型及易错题型。核心题型包括近年考试常考的题目类型,如高等数学中的洛必达法则、复合函数求导、二重积分计算,线性代数中的特征值、特征向量、矩阵对角化,概率统计中的随机变量密度函数、独立性、数字特征等问题,都需要同学们熟练掌握题目解法,落实到底。另外很重要的一点就是对自己掌握不太好的题型、经常做错或者感觉无从下手的题型也要多花时间彻底搞懂,弄通,并且通过更多的同类题目的练习加深巩固,直到对此类题目及与此相关的题目都能够轻松破解,变难题为拿手题,长此以往解题能力必可获得显著提高。
考研数学怎么做题
一、选择题
对于选择题来说,只有一个正确选项,其余三个都是干扰项,做题的时候只需给出正确选项的字母即可,不用给出推导过程,选对得满分,选错或者不选均得0分,不倒扣分。在做选择题的时候大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。选择题属于客观题,答案是的,并且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。
选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就能看出选项的题目。选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。所以选择题对于考生来说,要么依靠扎实的知识得分,要么靠自身的运气得分,这32分要想稳拿需要考生在复习的时候深入思考,不能主观臆想,要思考与动手相结合才行。
二、填空题
填空题的答案也是的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。
三、解答题
解答题的分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解法,得分率不容易控制,所以考试在做解答题是尽量用与《考试大纲》中规定的考试内容和考试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的时间以及考核目标是有关系的。
综合性较强、推理过程较多、或者应用性的题目,分值较高;基本的计算题、常规性试题和简单的应用题分值较低。解答题属主观题,其答案有时并不,要能看到出题人的考核意图,选择合适的方法解答该题。计算题的正确解答需要靠自己平时对各种题型计算方法的积累及掌握的熟练程度。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论【如积分区域对称,被积对象具有一定的奇偶性时的情形】等都需要非常熟悉。
证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理【微分中值定理及积分中值定理】,其次从题型来说就是不等式的证明,方法却比较多,但仍然是有章可寻的。这就需要考生在平时多留意证明题的类型及其证明方法。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,这需要考生在复习的过程中不断的加强与提高。
考研数学考试注意事项
考试之前需要准备证件:身份证、准考证;用品:2B铅笔,黑色中性笔、橡皮、小刀、手表【手机需要上交】。由于考试地点与自己住的地方比较远,有可能一些是高校,一些是初高中学校,需要提前预订宾馆。一些考点考试环境不好,准备厚衣服,注意保暖。
咱们的考研数学科目是在12月24日的上午,从现在开始,每天上午要把考研真题的第三遍按照考场的状态做一遍,时间控制在150分钟之内,因为这些试题都是你们做过的,熟悉度是有的,现在主要是练习做题速度,答题格式。考研数学实际的考试时间是180分钟,上了战场是全新的题目,需留出思考的时间。在这仅剩的几天里把高等数学、线性代数、概率论与数理统计梳理一遍。
高等数学是考研数学最灵活的一个模块,并且分值比较高,数一、数三试题占56%,数二试题占78%。结合10年真题,求函数极限、一元函数求导数与极值、多元函数求偏导与极值、求不定积分、求定积分、求二重积分都是高频题型,这些常规题型一定要非常熟练的掌握。有这样一句话,正确的理解了极限,高数的学习就成功了一半,极限的计算有9种方法:四则运算、等价无穷小的替换、洛必达法则、两个重要的极限、单侧极限、单调有界定理、夹逼准则、泰勒定理、定积分的定义【包括二重积分】;二重积分问题对于数二、数三的考生来说是每年必考的内容,考查的方式理论知识我们都知道的,无外乎就是直角坐标变换、极坐标变换、交换积分次序、利用奇偶性等进行计算,方法固定。每年的出题点就是变换积分次序和被积函数,考生只需要掌握解决二重积分的计算方法,二重积分的计算量还是蛮大的,这就需要考生结合一定量的练习解决计算的问题。微分方程经常以综合题目的形式考查。
微分方程数一、二考查无外乎就是那几种方程的的计算方法、几何应用、物理应用等,而数三考查的就少一点,考查几种简单方程的计算方法与几何应用。微分方程是数二每年必考的问题,多为几何应用、积分等问题,需要考生分析题干写出方程并求出解。而幂级数问题则是数三必考的问题,此类问题考查收敛区间、幂级数展开与求和问题,理论知识不难,但是需要考生绝对的细心和耐心,因为计算量真的很大。对数一来说,三重积分、曲线积分、曲面积分大题肯定是必考的,这一部分是考生不喜欢、头疼的章节,但是,题目虽难,方法就那些,很固定,掌握了方法,解决这类问题犹如探囊取物,手到擒来。线性代数相对比较简单,包含行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型五大模块,向量的线性表示、求解线性方程组、特征值与特征向量、二次型都是高频题型,针对这些知识点一定要非常熟练。概率论与数理统计是数一、数三考生的公共内容,数二考生不要求,占22%,包含概率论和统计两大模块。在研究生考试中,求随机变量函数的分布、随机变量的数字特征、估计参数是高频题型。围绕这些知识点的相关知识一定要熟练掌握。
怎样复习考研数学
▲高等数学
高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。
对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。
二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。另外还有曲线和曲面积分,这是数一必考的重点内容。一阶微分方程,掌握几个教材中的几种类型的求解就可以了。还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。
▲线性代数
线性代数考试题型不多,计算方法比较初等,但是往往计算量比较大,导致很多考生对线性代数感到棘手。从理论的角度出发,线性代数的很多概念和性质之间的联系很多,特别要根据每年线性代数的两道大题考试内容,找出所涉及到的概念与方法之间的联系与区别。例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。
复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行【列】变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。
▲概率论与数理统计
概率论与数理统计课程的主要特点是概念和公式繁多,章节的关系松散,应用题比较抽象,所以复习时要注重这些概念的理解。第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但这两章要深刻理解,只有这部分内容透彻理解后面的内容才能容易掌握。概率部分要重点掌握的是二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望、方差、协方差、相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且主要考计算。
最后,这部分难点是多维随机变量的函数的分布。这个考点最近几年每年必考,并且主要以大题的形式出现。虽然是难点,但是方法还是比较固定的,掌握每种题型的方法即可。大数定律和中心极限定理不是考试的重点,考纲要求是了解,所以只要掌握定理的条件和结论。数理统计部分主要围绕三大统计量分布,点估计是这部分内容的重难点,经常会考解答题。统计量的评选标准中的无偏估计要重点复习,有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。
- 考研政治思修主观题答题方法2022-05-10
- 考研数学从什么时候准备2022-05-10
- 审计学考研方向2022-05-10
- 数学方向考研2022-05-10
- 公共事业管理专业考研方向2022-05-10
- 铁道工程专业考研方向2022-05-10