考研数学必备21条解题思路

发布时间:2022-05-10 15:58:57

考研 数学必备21条解题思路

考研是个长期的过程,数学是其中重要的一科。那么,考研数学必备21条解题思路是什么?

一、高数解题的四种思维定势

第一句话:在题设条件中给出一个函数f【x】二阶和二阶以上可导,“不管三七二十一”,把f【x】在指定点展成泰勒公式再说。

第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

第三句话:在题设条件中函数f【x】在[a,b]上连续,在【a,b】内可导,且f【a】=0或f【b】=0或f【a】=f【b】=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f【u】再说。

二、线性代数解题的八种思维定势

第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行【列】展开定理以及AA*=A*A=|A|E。

第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

第三句话:若题设n阶方阵A满足f【A】=0,要证aA+bE可逆,则先分解因子aA+bE再说。

第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。

第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理

第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。

第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

三、概率解题的九种思维定势

第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式

第二句话:若给出的试验可分解成【0-1】的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式

第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组

第四句话:若题设中给出随机变量X~N则马上联想到标准化~N【0,1】来处理有关问题。

第五句话:求二维随机变量【X,Y】的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。

第六句话:欲求二维随机变量【X,Y】满足条件Y≥g【X】或【Y≤g【X】】的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g【X】或【Y≤g【X】】的区域的公共部分。

第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作【0-1】分解。即令

第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率【或已知概率求随机变量个数】的问题,马上联想到用中心极限定理处理。

第九句话:若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用卡方分布,t分布和F分布的定义进行讨论。

考研数学解题技巧总结

1、选择题答题技巧

代入法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

演算法:它适用于题干中给出的条件是解析式子。

图形法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。

反推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

2、解答题答题技巧

数学考试没有答题卡,在试卷上填写选择题答案。这里主要注意解答题的回答。尽量安排好回答的空间,如果不会做,可以先放一放,先把会做的题目答完,再回来做。

强烈建议,对于选择题和填空题,如果三分钟没有思考出来结果,就果断放弃。总之,选择题和填空题的解答时间不要影响后面的大题目。解答主观大题目也一定要学会放弃不会做的题,每道题思考时间一般不应超过10分钟,否则容易导致概率和线性代数等部分的题目无法解答,不要为了一道题目耽误了后面20~30分的内容。

考研数学重要知识点

▶1.几个易混概念

连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

▶2.罗尔定理

设函数f【x】在闭区间[a,b]上连续【其中a不等于b】,在开区间【a,b】上可导,且f【a】=f【b】,那么至少存在一点ξ∈【a、b】,使得f‘【ξ】=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f【x】在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f【x】在内【a,b】可导表明曲线y=f【x】在每一点处有切线存在;③f【a】=f【b】表明曲线的割线【直线AB】平行于x轴;罗尔定理的结论的直几何意义是:在【a,b】内至少能找到一点ξ,使f’【ξ】=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

▶3.泰勒公式展开的应用专题

我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?

▶4.应用多次中值定理的专题

大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。

▶5.对称性,轮换性,奇偶性在积分【重积分,线,面积分】中的综合应用

这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。

我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。

考研高等数学怎么复习

首先按照考试大纲划分复习范围。在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。

其次按照大纲对数学的基本概念、基本方法和基本定理准确把握。高等数学考查还是以考查考生的基本知识和基本技能为住,考卷中偏题和怪题不是很多,所以考生先要从基础学起,先把教材中的一些概念、定理、公式复习好,牢牢地记住,并在此基础上选择一些题目进行强化。如果基础不是非常好,我建议暑期或者秋季报个考研辅导班,在老师的带领下将所学的知识进一步强化巩固。

最后基本功扎实后,就要大量做题。数学只有通过做大量的题目才能有质的飞跃。基础阶段高数主要做教材上的习题及课后练习题,做一本书尽量好做详细的计划,当然做计划也是有技巧的:每天完成一章。因为每一章的内容多少和难度不同,不能一概而论,否则就会出现某一章一会就做完了,另外一章却做了一天也没结束,这样还容易打乱你其他科目的复习计划,毕竟考研不是只考数学。新东方网考研频道建议:比如第一章,感觉一下这章对于自己而言的难度,一共有多少页,自己计划几天完成,然后定好每天完成多少页,计划要定的稍微宽裕一天,以防出现突然有事,或者这章难度超出预料。不要觉得这费时间,一本书定个详细的计划一个小时足够了吧,而一个详细的计划会让自己效率提高很多。

数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,经常练习,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,但是长时间不骑,再骑总有点不习惯。所以考生们经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。

考研辅导机构推荐

新东方在线

新东方在线新东方在线考研网络课堂为您提供考研在线课程,正价课免费学,限时优惠活动进行中。

免费试听