土星为什么有光环

发布时间:2020-10-22 17:22:57

土星上为什么有光环?

土星光环成因

在土星轨道上除了一些卫星外,还有由“冰”块以及岩石碎片组成的环形物质带,正是这环形物质带里的“冰”块的反射太阳光形成美丽的土星光环。这些物质来自太空,由于星球赤道轨道对物质有较强的吸引力和牵动力,因而使赤道轨道物质产生了陀螺效应,使一些宇宙物质进入土星赤道轨道积聚运行。然而在土星轨道上除了有引力能量的星体以及被星体引力捕获的物质外,其它质量较大的物质最终会被土星引力吸引落入土星上,而新物质及质量较小的气体物质又在轨道上积聚运行,周而复始使土星光环可以长久存在,小星体也不断发展壮大变成了较大的土星卫星。

土星上为什么有光环?

由彗星撞击而瓦解的小型卫星是土星光环的成因。

星最初拥有多个土卫六大小的卫星,但由于靠得太近而最终坠入了土星。天文学家新近通过计算机模拟发现,在坠入土星的最终阶段,土星引力对这些卫星的加热会使它们上面的冰融化,并且使它的岩石向中心沉积。

当这样一颗卫星距离土星约100000千米时,引潮力会把它的外部冰层剥离并形成光环,而内部岩质核心则最终撞上土星。这一过程所产生的光环质量要比土星光环目前的质量大得多,光环宽度也宽得多。在演化过程中,它内边缘的物质逐渐流失,外边缘的物质则集聚成了土星富含水冰的几颗卫星。

https://iknow-pic.cdn.bcebos.com/1e30e924b899a9019a5a566512950a7b0208f572

扩展资料

土星和其他行星一样,也围绕太阳在椭圆轨道上运动。土星绕太阳公转的轨道半径约为9.54天文距离单位(约14亿公里)轨道的偏心率为0.056,轨道面与黄道面交角为2°5′,绕太阳公转一周约29.5年,公转平均速度约为9.6公里/秒。

土星同太阳的距离在近日点时和在远日点时相差约1 .5亿公里。

土星也有四季,只是每一季的时间要长达7年多,因为离太阳遥远,夏季也是极其寒冷的。

土星的自转很快,仅次于木星,其自转角速度随纬度而不同,在赤道上自转周期为10小时14分,在纬度60°处为10小时40分。由于快速自转,使得它的形状变扁,是太阳系行星中形状最扁的一个。

2019年1月,科学家基于美国宇航局卡西尼号探测器在2017年9月被摧毁之前收集到的数据,研究出土星自转的时长:10小时33分38秒。

土星为什么有美丽的光环?

土星最让人着迷的便是美丽的土星环。  伽利略在1610年用自制望远镜观察土星时,发现土星有两个“耳朵”。他误认为土星可能是由一大二小三个天体组成,怀疑这两耳朵是两颗卫星。但他一直不敢将观察结果发表,其原因是“卫星”并没有绕土星公转,似乎永远停留不动。而更令他惊奇的是那两颗“卫星”两年后竟然失踪,三年后又重新出现。  半个世纪后,荷兰天文学家惠更斯(ChristiaanHuygens)用更大更好的望远镜进行观测,才揭开了这个谜。原来那两颗“卫星”是与土星不相连接、环绕在土星赤道面上的光环。这光环由无数形状、大小不等,直径在7.6厘米~9米之间的冰块组成,以很快的速度围绕土星运转,在太阳光的照耀下呈现出各种颜色。光环的直径达27万千米,厚度为10千米左右,自东向西自转。1675年,意大利天文学家卡西尼(GiovanniDomenicoCassini)发现光环中有一圈空隙,这就是著名的卡西尼环缝。  土星环的结构在17~19世纪被陆续发现。到20世纪80年代初,至少3个探测器对土星“走马观花”,发现环的结构极为复杂。  人们根据地面观测和空间探测,把土星环划分为7层。距土星最近的是D环,亮度最暗;其次是C环,透明度最高;B环最亮;最后是A环。在A环和B环之间就是著名的卡西尼环缝,缝宽约5000千米。在A环之外有E、F、G三个环,最外层的是E环,十分稀薄和宽广。  “旅行者1号和2号”探测器把土星环的近距离照片送回后,科学家们非常吃惊:原来每一层又可细分成上千条大大小小的小环,即使被认为空无一物的卡西尼缝也存在几条小环。在照片中可见到F环有5条小环相互缠绕在一起。土星环的整体形状类似一张巨大的密纹唱片,从土星的云顶一直延伸到32万千米远的地方。光环的颜色远看是红棕色,其实每层都稍有不同,C环是蓝色,B环内层为橙色,外层为绿色,A环为紫色,卡西尼缝是蓝色的。  土星的自转轴和地球一样,也是倾斜的,土星的轴倾角是26.73°,地球则是23.45°。由于土星的光环和赤道是在同一平面上,所以它是对着太阳(也对着我们)倾斜的。当土星运行到其轨道的一端时,我们可由上往下看见光环近的一面,而远的一面仍被遮住。当土星在轨道的另一端时,我们就可由下往上看到光环近的一面,而远的一面依然被遮住。土星从轨道的这一侧转到另一侧需要14年多一点。  在这段时间内,光环也逐渐由最下方移向最上方。行至半路时,光环恰好移动到中间位置,这时我们观察到光环两面的边缘连接在一起,状如“一条线”。随后;土星继续运行,沿着另一半轨道绕回原来的起点,这时光环又逐渐地由最上方向最下方移动;移到正中间时,我们又看见其边缘连接在一起。因为土星环非常薄,所以当光环状如“一条线”时就好像消失了一样。1612年年底伽利略看到的正是这种情景;据说由于懊恼,他没有再观察过土星。   1675年,J.D.卡西尼发现,土星环并不是一个完整的光环。在光环的周围有一条暗线,把光环分成内外两部分。外面的一部分比较窄,而且不如里面那一部分亮,看起来像是两个环套在一起。从那以后,土星环一直被认为是由几个环组成的,这条暗线现在叫做卡西尼缝。  1826年,德国血统的俄国天文学斯特鲁维把外面的环命名为A环,把里面的环命名为B环。1850年,美国天文学家W.C.邦德宣称,还有一个比B环更靠近土星的暗淡光环。这个暗淡光环就是C环,C环与B环之间并没有明显的分界。  在太阳系的任何地方都没有像土星环那样的东西,或者说,用任何仪器我们也看不到任何地方有像土星环那样的光环。诚然,我们现在知道,围绕着木星有一个稀薄的物质光环,且任何像木星和土星这样的气体巨行星都可能有一个由靠近它们的岩屑构成的光环。然而,如果以木星的光环为标准,这些光环都是可怜而微不足道的,而土星的环系却是壮丽动人的。从地球上看,从土星环系的一端到另一端,延伸269,700公里(167,600英里),相当于地球宽度的21倍,实际上几乎是木星宽度的2倍。  土星环到底是什么呢?J.D.卡西尼认为它们像铁圈一样是平滑的实心环。可是,1785年拉普拉斯(后来他提出了星云假说)指出,因为环的各部分到土星中心的距离不同,所以受土星引力场吸引的程度也会不同。这种引力吸引的差异(即我前面提过的潮汐效应)会将环拉开。拉普拉斯认为,光环是由一系列的薄环排在一起组成的,它们排列得如此紧密,以致从地球的距离看去就如同实心的一样。  可是,1855年,麦克斯韦(后来他预言了电磁辐射宽频带的存在)提出,即使这种说法也未尽圆满。光环受潮汐效应而不碎裂的惟一原因,是因为光环是由无数比较小的陨星粒子组成的,这些粒子在土星周围的分布方式,使得从地球的距离看去给人以实心环的印象。麦克斯韦的这一假说是正确的,现在已无人提出疑义。  法国天文学家洛希用另一种方法研究潮汐效应,他证明,任何坚固的天体,在接近另一个比它大得多的天体的时候,都会受到强大的潮汐力作用而最终被扯成碎片。这个较小的大体会被扯碎的距离称为洛希极限,通常是大天体赤道半径的2.44倍。这样,土星的洛希极限就是2.44乘以它的赤道半径60,000公里,即146,400公里,A环的最外边缘至土星中心的距离是136,500公里(84,800英里),因此整个环系都处在洛希极限以内。(木星环也同样处在洛希极限以内。)  很明显,土星环是一些永远也不能聚结成一颗卫星的岩屑(超过洛希极限的岩屑会聚结成卫星----而且显然确实如此),或者是一颗卫星因某种原因过分靠近土星而被扯碎后留下的岩屑。无论是哪一种情况,它们都是余留的一些小天体。(被作用的天体越小,潮汐效应也就越小,碎片小到某个程度之后,就不再继续碎裂了,除非两个小天体相互间偶尔碰撞。)据估计,如果将土星环所有的物质聚合成一个天体,结果将会是一个比我们的月亮稍大的圆球。

土星为什么有光环?

土星的光环大约在 45 亿年前土星最初诞生时就一同形成了,因为当时的太阳系内充满着各种细小的碎冰块。

高中辅导机构推荐

简单学习网

简单学习网简单学习网是知名的中学辅导网站,提供高中学习机及高中视频资源,帮助全国中学生提高学习效率及成绩。

免费试听