考研数学线性代数复习方法

发布时间:2022-05-10 18:28:42

线性代数这一部分在考研数学中,因为所占的考试题型不多、计算方法比较初等、计算量比较大等特点,导致很多考研的小伙伴们对线性代数感到棘手。下面是考研数学线性代数复习方法,一起来了解下吧:

【考研数学线性代数复习方法】

1、理解与把握基本概念,熟练运用基本运算

线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩【矩阵、向量组、二次型】,等价【矩阵、向量组】,线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式【数字型、字母型】的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量【定义法,特征多项式基础解系法】,判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵【亦即用正交变换化二次型为标准形】。

2、重视基本概念、基本性质、基本方法的理解和掌握

基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识。

3、综合掌握“一条主线,两种运算,三个工具”

复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,线代概念非常多而且相互联系,但线代贯穿的主线求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。两种运算是求行列式、矩阵的初等行【列】变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。

4、加强综合能力的训练,培养分析问题和解决问题的能力

从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题【或做近几年的研究生考题】,边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

5、网状化知识结构,提高综合分析能力

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对,再问做得好不好。只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

历年真题中,两道大题考试内容。考生应注意掌握知识点间的联系与区别,例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。灵活掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。

6、注重分析一些重要概念和方法之间的联系和区别

线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如: 向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关【无关】与齐次线性方程组有非零解【仅有零解】的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

7、加强逻辑性,正确简明叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

8、不要陷入行列式的复杂计算之中

行列式是线性代数中的基本工具,在研究线性方程组和特征值和特征向量时会用到,有些行列式的计算很复杂,计算量也很大,但考研大纲对这部分内容的要求并不高,只是要求会用行列式的性质和按行【列】展开定理计算行列式,该部分内容不是考试的重点,因此不要在这方面花太多时间,只要掌握基本的公式和计算方法即可。

从历年考研试题分布来看,涉及行列式计算的题型有4种形式:一是单纯的行列式计算,即题目给出一个具体行列式,要求计算其值,二是给出一些抽象矩阵【方阵】及相应条件,要求计算其矩阵行列式的值,三是在解线性方程组时需要计算其系数矩阵的行列式的值,四是在求解特征值时可能需要计算特征方程的根,这4种题型考生在复习时都要做一些题,掌握其基本解题方法。

【考研数学线性代数复习建议】

一、重视基本概念、基本性质、基本方法的理解和掌握

基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识。

二、加强综合能力的训练,培养分析问题和解决问题的能力

从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题【或做近几年的研究生考题】,边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

三、注重分析一些重要概念和方法之间的联系和区别

线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如: 向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关【无关】与齐次线性方程组有非零解【仅有零解】的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

【考研数学线性代数复习指导】

对于基础一般的考生,不管是线性代数还是数学的其他部分,都要进行一个前期的复习。考生可以报一个春季数学基础班,春季基础班只是周末上课,战线比较长。另外不同于强化班连续上课,考生能够抽出一些时间提前预习上课内容,课后也有时间巩固、强化上课内容。如果能够跟着老师认认真真复习一段时间,我想数学肯定会有很大提高的。数学的复习离不开做题,所以一定要通过做题巩固所学的概念、原理和方法。做题时不要找难题、怪题,要针对基本知识点和基本原理多做练习,体会这些知识点和原理的应用。

基本概念、基本方法、基本性质一直是考研数学的重点,从多年的考研阅卷经验看,考生对数学基本概念掌握不够牢固,理解不够透彻。有些同学在考场上,不知道怎样下手,不知道该用哪个公式。所以在数学复习中一定要重视基础知识,你要复习所有的公式、定理、定义,多做一些基础题来帮助巩固基本知识。

线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关【无关】与齐次线性方程组有非零解【仅有零解】的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

考试中心数学考试分析中根据阅卷情况对考生提出的思考和建议是,注重数学基础,在阅卷中发现很多考生出现一些低级的错误,这是基本功不扎实的表现,可能是考生在复习过程中存在的偏差,一些考生在复习时过分追求难题,而对基本概念,基本方法和基本性质重视不够,投入不足,所以考生数学没考好都是在基本功的问题上,希望你能调整好心态,不要浮躁,踏踏实实一步一个脚印的复习。

还要认真做一些基础题,做完后不要急不可耐地对答案,好好复查一下,一定要三思后确定自己的答案后再看参考答案,要养成思考的习惯,拿到题时,应该有个思路,问问自己:这道题老师想考我什么,以前我在这个知识点上出错过吗?在做题时要前瞻顾后。还有一个好方法,做一个自己的错题集,经常拿出来看,就会对自己形成心理暗示,以后就不会在同一个地方跌跟头。

【考研数学线性代数复习应该重视哪些内容】

1、函数、极限与连续。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

2、一元函数微分学。求给定函数的导数与微分【包括高阶导数】,隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

线代概念很多,重要的有代数余子式、伴随矩阵、逆矩阵、初等变换与初等矩阵、正交变换与正交矩阵、秩【矩阵、向量组、二次型】、等价【矩阵、向量组】、线性组合与线性表出、线性相关与线性无关、极大线性无关组、基础解系与通解、解的结构与解空间、特征值与特征向量、相似与相似对角化、二次型的标准形与规范形、正定、合同变换与合同矩阵。

而运算法则也有很多必须掌握:行列式【数字型、字母型】的计算、求逆矩阵、求矩阵的秩、求方阵的幂、求向量组的秩与极大线性无关组、线性相关的判定或求参数、求基础解系、求非齐次线性方程组的通解、求特征值与特征向量【定义法,特征多项式基础解系法】、判断与求相似对角矩阵、用正交变换化实对称矩阵为对角矩阵【亦即用正交变换化二次型为标准形】。

考研辅导机构推荐

新东方在线

新东方在线新东方在线考研网络课堂为您提供考研在线课程,正价课免费学,限时优惠活动进行中。

免费试听