考研高等数学知识点

发布时间:2022-05-10 18:43:51

每一天创新一点点,是在走向领先。每一天多做一点点,是在走向丰收。每一天进步一点点,是在走向成功。

考研高等数学知识点【1】

一.函数、极限与连续

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

二.一元函数微分学

求给定函数的导数与微分【包括高阶导数】,隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三.一元函数积分学

计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

考研高等数学知识点【2】

第一,复习方法采用“两端看法”,就是对强化阶段的所学过的知识和做题方法做一个总结和归纳。

总结和归纳结束之后,采用高等数学、概率论一起交叉、轮流来看,最后汇集到线性代数上。我们也把这个阶段用一个字来形容“啃”,所以也可以叫做“啃”强化阶段所学过到的知识。这里的“啃”是来形容这个阶段的艰难程度,大家到了这个阶段普遍感到压力陡增,即使那些在第一阶段认真完成的同学也一样,这里的主要原因是这一阶段大家所学到的知识和解题方法普遍特点是对知识点的总结是高度的概括的,虽然老师在强化阶段帮助大家将知识体系化和系统化,但是那毕竟是老师的东西,考生应该学着将这些东西变成自己的。

第二,所选的题目不论是例题还是课后的练习题都具有一定的综合性,这些题目不再是只考查单一的知识点,单一的解题能力,而是对同学们能力的全方位考查,不仅考查同学们的计算能力、抽象概括能力、空间想象能力还考查同学们应用所学的知识解决实际问题的能力。

大家在平时练习的时候做适量难度稍大的题,会有助于大家在考试过程中保持平和的心态,遇到难题不会慌。但这并不是说让大家在复习的过程中就只钻研难题,而对于容易的题和中等难度的题不屑一顾,这样只会导致考研失败。我们做题难度要适当,题量要适当。所以,大家不要进入做题的误区,要难度适当地练习,不要死扣难题,毕竟考研考察的是基础知识,使大家都能接受的水平。这就要求同学们在这个阶段付出巨大的努力,但是无论你多累都是值得的,通过这个阶段洗礼,无论是你对三基的掌握程度,还是你的解题能力都会有质的提高。这是大家考研数学复习备考路上第一次质的飞跃。第三,寻找问题。这里的寻找问题,不单是指我们在强化阶段所遇到的知识层面的问题,还有个人的问题,这里面包括学习的态度问题,学习的姿态问题。

这个阶段完后,要求同学们能够做到,给你一道题目,如果给你足够的时间,无论这道题目有多难都可以把它解决。这个阶段我们不会盲目的追求大家的解题速度,而是强调你对基本知识的掌握和对各种题型解题思路的形成。我们不重视解题速度并不等于我们就忽视解题速度的训练,这里要求大家在这阶段对一道题目积累多种解题方法并能够找出最优的解题方法,这是为以后以最快的速度做完考研试题做得最好的准备。

考研高等数学知识点【3】

高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有以下几点:

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法,由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

考研高等数学知识点【4】

1.理解与把握基本概念,熟练运用基本运算

线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩【矩阵、向量组、二次型】,等价【矩阵、向量组】,线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式【数字型、字母型】的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量【定义法,特征多项式基础解系法】,判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵【亦即用正交变换化二次型为标准形】。

2.网状化知识结构,提高综合分析能力

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对,再问做得好不好。只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

文章开头提到了历年真题中,两道大题考试内容。考生应注意掌握知识点间的联系与区别,例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。灵活掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。

3.加强逻辑性,正确简明叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

考研辅导机构推荐

新东方在线

新东方在线新东方在线考研网络课堂为您提供考研在线课程,正价课免费学,限时优惠活动进行中。

免费试听