考研数学该怎么看教材
发布时间:2022-05-10 19:16:46考研 数学该怎么看教材
考研数学比较难,所以绝对不能轻视,复习越早越好! 那么,考研数学该怎么看教材?
一、没有大纲?没关系!
准备开始前期复习,但是考研大纲却迟迟没有下来,这时,需要花大力气学习的数学该怎么复习呢?其实在复习的基础期,考生可以找出自己从前所学的教材,或者找到目标学校所规定的教材,对照教材把知识点系统梳理,逐字逐句、逐章逐节地对概念、原理、方法进行全面深入的复习。
同时,考生还应注意基础概念的背景和各个知识点的相互关系,一定要先把所有的公式,定理,定义记牢,然后再做一些基础题进行巩固。
二、确认复习方向
大家要在复习前期认清复习方向,对于2017考生来说,首先要注重基本概念、基本定理和符号法则,这些东西都需要理解和记忆。当然记忆这个问题是需要平常多练的,另外在复习的时候我们要学会灵活变通,学会举一反三。
对于数学的复习,要认清每个阶段的任务,在复习的基础阶段,如果大纲没有出来,就根据课本,从头至尾复习,达到记住所有公式、概念的目的。在以后的复习过程中,通过练习,强化能力。
在大纲发布之后,便可以在强化练习之前,抽出一个星期左右的时间,将自己所复习的知识点与大纲的要求进行对比,尤其是深入强化大纲中的重点内容。总之,在考研大纲出来之前,数学要以课本为纲,加强基础知识的复习。
三、看教材与做题相结合
大家在看教材的时候,容易看了后边的忘了前边的,所以在复习的时候要不断巩固,加强对基础知识点的理解。总结是一个很好的复习方法,是使知识的掌握水平上升一个层次的方法。
所以大家在平日的复习当中,要做自己所选教材后边的一些配套的基础性的练习题,勤动手,同时对于一些自己不会做得题目,多思考,多问自己几个为什么。有些具有一定难度的题目,可能需要参考标准答案,此时一定要分析一下别人的思路,多总结,多想想以后遇到类似的题目,自己应该从哪些方面去思考,这样慢慢积累,就会成为自己的知识,为自己所用。
考研数学如何备考才好
教材的选择
《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
《线性代数》清华版:讲解详实,细致深入,适合时间充裕的同学【推荐】。
《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的同学。
《概率论与数理统计》浙大版:课后习题中基本的题型都有覆盖。
强调学习而不是复习
由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
复习顺序的选择问题
建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。
注意基本概念、基本方法和基本定理的复习掌握
结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果这个基础打不牢,其他一切都是空中楼阁。
加强练习,重视总结、归纳解题思路、方法和技巧
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
不要依赖答案
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
强调积极主动地亲自参与,并整理出笔记
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。
数学考研如何得到高分
►夯实基础
要具备牢固扎实的基础知识。数学,最需要强调的是基础。很多同学不重视基础的学习,反而只是忙着做题,做难题,就想通过题海战术取胜,这是不行的,就像是不会走路的孩子总想直接跑步一样。当然,这里并不是说不用多做题,做题量也是要保证的,这点在下面会说到。
分析一下数学试卷就会发现,80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。回忆一下你做题时,题目中涉及到的知识点是否清楚的了解了?要用到的公式、定理是否提笔就能写出来?这一点做不到,怎么能进入下一步寻找解题方法并写出完整的解题过程呢?事实上,大部分同学的回答是还需要去翻书查找,要知道,考场上是没有课本的。所以,一定要先打好扎实的基础,再进行解题能力和解题速度的训练。
具体来说,数学基础的掌握,可以通过以下方法:
【1】把数学复习全书上总结好的知识点认真掌握住。一般不同版本的复习全书上的知识点讲解都很全面、详细,还有例题讲解当中总结出的解题技巧和方法,推导出的公式、定理,都要重点记忆。
【2】数学也要做笔记。由于复习全书上的知识点过于详细,在以后的第二、三轮复习中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要你把其中精华的地方和自己掌握的不好的地方以及考试的常考知识点总结在一个本子上,这样再复习的时候就可以直接看这个本子,会节省下很多时间,提高效率。而且复习间歇,可以随时拿出来记一记、背一背。
【3】这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准。所以,要每天都携带在身上,就像英语单词小册子一样,要经常温习。
►勤于思考
要勤于思考,多动脑。很多同学学数学就喜欢看例题,看别人做好的题目,分析别人总结好的解题方法、步骤。只这样是远远不够的。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。
第一遍复习可以只看题,但以后就必须自己试着做了,先不看答案,完全通过自己的能力做着试试,不管能做到什么程度,起码你自己先思考了,只有启动自己的大脑,才会使知识更深入的得到理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。
在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力。我在学数学的过程中,很少去问别人这道题该怎么做,就想通过自己的思考解决,不轻易认输,希望大家也不要省略掉这一认真思考过程,要勇于挑战自己,不要轻易投降。
►归纳总结
学会总结,善于归纳,使知识系统化。善于总结也是我要十分强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就结束了,一套题的价值也就到此为止了。我建议大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。
对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其最大的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就OK了。
►适度练习
保证做题量,还要有一定的普及性。可以说,题海战术在一定意义上还是很有道理和必要性的。对于数学考试来说,就是解题,理论再好也要应用于实践,要运用自如。因此,在打好基本功以后,就要开始不断的做题了。
首先,题目的选择上,要广泛一些,各个名师的模拟题、复习题等都涉及一些。这是因为,每个人的出题思路是一定的,重点偏向及难易程度也差不多,做不同人编的题,有助于题型的广泛摄取和把握,只有题型见得多了,思路才能拓展开,而且各种难度的题目也都尝试过了,见到考试卷时才不会有太多措手不及的感觉,这就是我说的普及性。
其次,做题的数量上,在你的能力范围内大量练习,但不必太多,尤其是到了最后冲刺阶段,主要精力应放在政治和专业课上面的时候,也就没有那么多时间去做数学题了。但也一定不要就把数学放鸽子了,因为数学不做就会手生,找不到感觉,所以,要给自己安排好一个做题计划,比如说两天一套题或三天一套题,根据自己其他科目的复习情况以及此门课程的复习情况来定。
最后,留一两套题在考前作为热身训练,不过不用在意那时做题打出的成绩,因为就要上考场了,好坏都没有多大的意义了,关键是用它来找找做题的感觉。
►避免粗心
养成做题仔细、谨慎的习惯。粗心大意也是许多同学的一大难题。你想,题目明明会做,可答案偏偏不对,大题还好些,还能给你一些步骤分,小题就惨了,是一分不得的。所以,这一点也要引起高度的重视。
一般来说有这个问题的同学有一个共性,就是在草稿纸上演算时,比较潦草,纸上经常是乱七八糟,想回过头查找一下某道题的计算过程,是很难的一件事。还有就是演算的时候不认真。帮帮建议大家在使用草稿纸的时候,把纸利用的整齐一些,写的也规整一些,书写认真一些,慢慢就能减少错误率了。
考研高等数学复习要点
根据新的《全国硕士研究生招生考试数学考试大纲》可知,数学考试内容涉及到的学科有高等数学,线性代数,概率论与数理统计。在这里,提醒诸位考生注意的是,在数学一和数学三的试卷中,高等数学部分的满分是82分,线性代数和概率论与数理统计的部分的满分各是34分,加起来总计150分。在数学二的试卷中,概率论与数理统计的内容不在考试范围中,高等数学部分的满分是116分,线性代数是满分是34分,这两科加起来总计是150分。
接下来,我们根据历年真题,并结合考研大纲,对这些学科进行逐一分析。
第一部分,高等数学。高等数学作为硕士研究生招生考试的内容之一,主要考查考生对高等数学的基本概念、基本理论、基本方法的理解和掌握以及考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。
经统计,在当前的考试大纲中,高等数学部分由八个章节构成,其分别为:
1、函数、极限、连续:【1】函数;【2】极限;【3】连续。
2、一元函数微分学:【1】导数与微分;【2】导数的计算;【3】微分中值定理;【4】导数的应用。
3、一元函数积分学:【1】不定积分;【2】定积分;【3】定积分的应用。
4、向量代数和空间解析几何:【1】向量的概念及运算;【2】空间平面方程;【3】空间直线方程;【4】空间曲面及其方程;【5】空间曲线及其方程。
5、多元函数微分学:【1】多元函数微分学的极限与连续、偏导数与全微分;【2】多元函数的极值与最值;【3】多元函数微分学的几何应用。
6、多元函数积分学:【1】二重积分;【2】三重积分;【3】曲线积分;【4】曲面积分。
7、无穷级数:【1】数项级数;【2】幂级数;【3】傅里叶级数。
8、常微分方程【1】微分方程;【2】差分方程。
接下来,本文将数学一、数学二和数学三的考试范围作一个综述:
【1】数学一,其不考的内容是:常微分方程中的差分方程。
【2】数学二,其不考的内容是:向量代数和空间解析几何、多元函数微分学中的几何应用、多元函数积分学中的三重积分和曲线曲面积分、无穷级数、常微分方程中的差分方程。
【3】数学三,其不考的内容是:向量代数和空间解析几何、多元函数微分学中的几何应用、多元函数积分学中的三重积分和曲线曲面积分、无穷级数中的傅里叶级数。
与此同时,凡是涉及到微分或积分的物理应用时,如:曲率及曲率半径、定积分的物理应用等,此部分只有数学一和数学二考,数学三偏重经济应用。