数学基础差的学生如何考研

发布时间:2022-05-10 19:46:59

数学基础差的学生如何 考研

数学是考研中难度较大的一门科目,基础差的学生平时更要多加学习。那么,数学基础差的学生如何考研?

一、选对教材、考生这个时候一定要心平气和的把课本看一遍,可以参考中创考研网站上热卖的数学辅导书,考生一定要仔细的将书中的例题全部都搞懂【大纲范围内】,并且做到合上书也能够完整的做题。

二、把某一知识点对应的适用条件也掌握好、记得知识点以后要做什么?自然是用于解题。这时候就出现了一个值得注意的问题,那就是定理和公式成立的条件,与所辅导的学生沟通的情况来看,很多人容易忽视这个环节。连续函数的若干性质,如最大值最小值定理、零点定理等,都是指的闭区间上连续函数的性质;中值定理那一章节里,很多定理成立的条件都是所给函数在闭区间上连续、开区间上可导;强烈建议大家在复习过程中自己多总结,总的来说,记得知识点不是难事,但是一定要注意同时把某一知识点对应的适用条件也掌握好!只有同时把这两方面把握住了,概念这一块才算过关,才算打好了基础。

三、不断重复、数学基础的复习重在牢固,基础不好可以尽早复习,但不能尽快,因为步伐太快会让复习的效果打折扣,因此不断地重复以前复习的内容,让复习的知识在脑海中形成一个框架,不仅能让自己复习效果比较显著,还能为以后的强化、冲刺做好准备。

考研数学基础差怎么学

第一:练习重质不重量

许多同学为求稳求全,唯恐错过任何新的题目,凡是市面上出现的试题都想买回来做上一遍。要知道每年新出的各种科目的练习题起码有2000多种,要在短短的几十天里都做完是根本不可能的。

建议同学们适当选择2-3套模拟题,可优先选择所看参考书配套的练习题——便于查漏补缺,再选择名师所出的模考题——便于重组知识点,然后参考最后十多天考研辅导机构或考研专家所出的押题性质资料。

第二:时间规划要科学

有许多同学认为,到了备考阶段,练习模拟题应该严格按照考试的时间及科目来进行,以便找到临场的真实感觉并调整好生物钟,进入百分之百的临考状态。例如,许多人很早就开始选择循环两天进行一轮模拟考:第一天早上安排政治,下午英语,第二天接着是上午数学【专业课一】,下午专业课二。但这样的练习缺乏“系统性”,犯了复习的大忌。

因为这样的安排只能简单地对一下答案,没有足够的时间去消化错误;有的同学草草对完一遍答案后,就会纠结于所考分数,容易忽略对所考题型和知识点的进一步总结,然后又为了完成复习计划匆匆进行下一轮的模拟考,导致一整套题做下来收效甚微,这就陷入了“为练习而练习”的误区。练习最重要的目的是查漏补缺,侧重检验知识点,要把错题和新的解法、新的技巧整理出来。

一位考上北大数学系的同学介绍她的复习经验时说:“我复习每一个科目都是以天作为单位,例如今天一整天连续做2-3套数学习题,然后要花5个小时左右对答案,整理纠错笔记,把所有的知识点都串一遍。明天再换成专业课,以此类推。这样每一天都能保证每套题目都做出‘味道’,一个科目有阶段性的收获。”

第三:多多总结

同学们做模拟考题,最为关注的往往是模拟考的成绩。分数高了容易放松,分数低了就会失落,心情会随着分数大起大落。一个去年的成功同学的备考经历:模拟考难度要比正式考试难很多,所以很多同学在11月、12月的模拟考分数都不理想。有一个同学在最后一次模拟考试后放声痛哭,甚至说不想去参加考试了。经过研友多次沟通才鼓起勇气踏入考场,最后数学考了满分。

这种情况每年都会发生。大家要相信,经过长时间的反复练习后,自己在知识基础、应试技巧、心理承受能力方面都已经得到提高。做模拟考题的主要目的还是查漏补缺,有不懂的题目高度重视,多花时间攻克。

小贴士:模拟题仅仅是模拟题,不能完全与真题相提并论。特别是里面的题型、知识点往往偏全、偏难,要拿到高分不太容易。同学们不需背负太多的心理负担,记住需要查漏补缺的知识点,对于考分则要过后即忘。

考研数学怎么打好基础

★夯实基础

要具备牢固扎实的基础知识。数学,最需要强调的是基础。很多同学不重视基础的学习,反而只是忙着做题,做难题,就想通过题海战术取胜,这是不行的,就像是不会走路的孩子总想直接跑步一样。当然,这里并不是说不用多做题,做题量也是要保证的,这点在下面会说到。

分析一下数学试卷就会发现,80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。回忆一下你做题时,题目中涉及到的知识点是否清楚的了解了?要用到的公式、定理是否提笔就能写出来?这一点做不到,怎么能进入下一步寻找解题方法并写出完整的解题过程呢?事实上,大部分同学的回答是还需要去翻书查找,要知道,考场上是没有课本的。所以,一定要先打好扎实的基础,再进行解题能力和解题速度的训练。

具体来说,数学基础的掌握,可以通过以下方法:

【1】把数学复习全书上总结好的知识点认真掌握住。一般不同版本的复习全书上的知识点讲解都很全面、详细,还有例题讲解当中总结出的解题技巧和方法,推导出的公式、定理,都要重点记忆。

【2】数学也要做笔记。由于复习全书上的知识点过于详细,在以后的第二、三轮复习中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要你把其中精华的地方和自己掌握的不好的地方以及考试的常考知识点总结在一个本子上,这样再复习的时候就可以直接看这个本子,会节省下很多时间,提高效率。而且复习间歇,可以随时拿出来记一记、背一背。

【3】这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准。所以,要每天都携带在身上,就像英语单词小册子一样,要经常温习。

★勤于思考

要勤于思考,多动脑。很多同学学数学就喜欢看例题,看别人做好的题目,分析别人总结好的解题方法、步骤。只这样是远远不够的。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。

第一遍复习可以只看题,但以后就必须自己试着做了,先不看答案,完全通过自己的能力做着试试,不管能做到什么程度,起码你自己先思考了,只有启动自己的大脑,才会使知识更深入的得到理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。

在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力。我在学数学的过程中,很少去问别人这道题该怎么做,就想通过自己的思考解决,不轻易认输,希望大家也不要省略掉这一认真思考过程,要勇于挑战自己,不要轻易投降。

★归纳总结

学会总结,善于归纳,使知识系统化。善于总结要强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就结束了,一套题的价值也就到此为止了。建议大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。

对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其最大的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就OK了。

★适度练习

保证做题量,还要有一定的普及性。可以说,题海战术在一定意义上还是很有道理和必要性的。对于数学考试来说,就是解题,理论再好也要应用于实践,要运用自如。因此,在打好基本功以后,就要开始不断的做题了。

首先,题目的选择上,要广泛一些,各个名师的模拟题、复习题等都涉及一些。这是因为,每个人的出题思路是一定的,重点偏向及难易程度也差不多,做不同人编的题,有助于题型的广泛摄取和把握,只有题型见得多了,思路才能拓展开,而且各种难度的题目也都尝试过了,见到考试卷时才不会有太多措手不及的感觉,这就是我说的普及性。

其次,做题的数量上,在你的能力范围内大量练习,但不必太多,尤其是到了最后冲刺阶段,主要精力应放在政治和专业课上面的时候,也就没有那么多时间去做数学题了。但也一定不要就把数学放鸽子了,因为数学不做就会手生,找不到感觉,所以,要给自己安排好一个做题计划,比如说两天一套题或三天一套题,根据自己其他科目的复习情况以及此门课程的复习情况来定。

最后,留一两套题在考前作为热身训练,不过不用在意那时做题打出的成绩,因为就要上考场了,好坏都没有多大的意义了,关键是用它来找找做题的感觉。

★避免粗心

养成做题仔细、谨慎的习惯。粗心大意也是许多同学的一大难题。你想,题目明明会做,可答案偏偏不对,大题还好些,还能给你一些步骤分,小题就惨了,是一分不得的。所以,这一点也要引起高度的重视。

一般来说有这个问题的同学有一个共性,就是在草稿纸上演算时,比较潦草,纸上经常是乱七八糟,想回过头查找一下某道题的计算过程,是很难的一件事。还有就是演算的时候不认真。建议大家在使用草稿纸的时候,把纸利用的整齐一些,写的也规整一些,书写认真一些,慢慢就能减少错误率了。

数学无基础如何考研

一、注意基本概念、基本方法和基本定理的复习掌握

首先,复习基础知识要扎实,还要有扩展的意识,这一点在数学学习中一直存在。对教材上的每一个大纲规定的考试知识点均需深入理解,融会贯通,此时在看或学这些知识点的时候可以做一做书后相应的练习题以加深理解。

这一步是为以后进一步复习打基础的阶段,务必要认真进行。

结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

分析表明,考生失分的一个重要原因就是对基本概念、基本定理,理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果不打牢这个基础,其他一切都是空中楼阁。

二、加强练习,充分利用历年真题,重视总结、归纳解题思路、方法和技巧

数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和运算。

三、开始进行综合试题和应用试题的训练

数学考试中有一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度相对较大。在首轮复习期间,虽然它们不是重点,但也应有目的地进行一些训练,积累解题经验,这也有利于对所学知识的消化吸收,彻底弄清有关知识的纵向与横向联系,转化为自己的东西。

往年的真题一定要反复做,当然时间需掌握好,一般应放在复习完全部的教材知识之后与强化训练之后各进行若干次。真题体现了大纲所规定的考试宗旨,但某一年的真题并不能完全覆盖大纲规定的所有考点,所以往年的真题做得越多越好。

四、突出重点

高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。主要内容有:

1】函数、极限与连续:主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2】一元函数微分学:主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理以及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

3】一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4】多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数、方向导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

6】多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序;

7】微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法

跨章节、跨科目的综合考查题,近几年出现的有:微积分与微分方程的综合题;求极限的综合题等。

线性代数的重要概念包括以下内容:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩【矩阵、向量组、二次型】,等价【矩阵、向量组】,线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。

线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。

概率论与数理统计是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其考点如下:

1】随机事件和概率:包括样本空间与随机事件;概率的定义与性质【含古典概型、几何概型、加法公式】;条件概率与概率的乘法公式;事件之间的关系与运算【含事件的独立性】;全概公式与贝叶斯公式;伯努利概型。

2】随机变量及其概率分布:包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。

3】二维随机变量及其概率分布:包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。

4】随机变量的数字特征:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。

5】大数定律和中心极限定理,以及切比雪夫不等式。

考研辅导机构推荐

新东方在线

新东方在线新东方在线考研网络课堂为您提供考研在线课程,正价课免费学,限时优惠活动进行中。

免费试听