考研数学基础知识梳理
发布时间:2022-05-10 20:51:24有很多同学都不太重视卷面问题,要知道,卷面的干净整洁度是会拉开5分上下的差距。对于分数擦线的同学来说,5分足以决定考研的最终结果。
考研数学基础知识梳理【1】
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。
1.重点内容
(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构
(2)齐次线性方程组基础解系的求解
(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)
2.常见题型
(1)线性方程组的求解
(2)方程组解向量的判别及解的性质
(3)齐次线性方程组的基础解系
(4)非齐次线性方程组的通解结构
同学们可以对照以上内容和题型,多问问自己是否已熟练掌握相关知识点和对应题型的解答。应该说考研数学最简单的部分就是线性代数,但这部分的难点就在于概念非常多而且相互联系,线代贯穿的主线就是求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。
考研数学基础知识梳理【2】
一、函数极限连续
1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。
2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。掌握利用两个重要极限求极限的方法。理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。
3、理解函数连续性的概念,会判别函数间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质【最.大值、最小值定理和介值定理】,并会应用这些性质。
重点是数列极限与函数极限的概念,两个重要的极限:lim【sinx/x】=1,lim【1+1/x】=e,连续函数的概念及闭区间上连续函数的性质。难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
二、一元函数微分学
1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
2、掌握导数的四则运算法则和一阶微分的形式不变性。了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。
5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。
罗必塔法则函数的极值和最.大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。
考研数学基础知识梳理【3】
1.函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算【包括隐函数求导】、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何【数一】
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系【平行、垂直、相交等】】解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
考研数学基础知识梳理【4】
线性代数的核心就是如何解方程组,所以本部分中线性方程组什么时候有解,是有唯一解还是有无穷多解,如何求解是复习的重点,通常在考试中会在本部分出一道大题。而向量的线性相关性问题一般转化为线性方程组有无解的问题,所以可放在一起复习。
1、非齐次线性方程组解的结构及通解;
2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;
3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;
4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;
5、向量、向量的线性组合与线性表示的概念;
6、用初等行变换求解线性方程组的方法;
7、基变换和坐标变换公式,过渡矩阵。【数一】
8、向量空间、子空间、基底、维数、坐标等概念;【数一】
9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;
10、向量组的极大线性无关组和向量组的秩的概念和求解;
11、向量组等价的概念,矩阵的秩与其行【列】向量组的秩之间的关系。
- 研究生考试英语考试2022-05-10
- 考研数学全书哪个好2022-05-10
- 考研英语怎样自己总结作文模板2022-05-10
- 考研英语基础差复习心得2022-05-10
- 考研英语怎么过2022-05-10
- 文科专业考研方向2022-05-10